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Autoregressive Models

* Many kinds of models

* Markov Chains
Hidden Markov Models
 Markov Random Fields
* Linear Dynamical Systems
* Recurrent Neural Networks
* Transformers

 Last lecture
 Word Embedding
* Positional Encoding
e Attention Mechanism
* Multi-head Attention
e Attention Visualization
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Figure 1: The Transformer - model architecture.



From Last Lecture

* [NeurlPS 2017] Attention is all you need: the
Transformer that contains Encoder Block and
Decoder Block.

* The design allows engineers to stack multiple blocks
all together in large-scale training, which enables the
emergence of foundation models.

Attention Is All You Need
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Attention Visualization: Long distance dependency

e Earlier we saw the sentence: “The animal didn't cross the

street because it was too tired.”
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* On the right we see another visualization showing how

different words in a longer sentence relate to each other.

 Check out this interactive visualization.
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https://colab.research.google.com/github/tensorflow/tensor2tensor/blob/master/tensor2tensor/notebooks/hello_t2t.ipynb

Attention: Attention from Di

* Attention heads can specialize

to capture various dependencies, such
as syntactic and semantic relationships.

* This allows the model to attend to
different types of causalities between
words in a sentence.
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RNNs vs. Transformers

Recurrent Neural Network Transformers
* Handle Sequential Data * Handle Sequential Data
* Learn Sequential Dependencies * Learn Sequential Dependencies
* Each time step depends on the * Use self-attention to capture global
previous one context
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RNNs vs. Transformers

Recurrent Neural Network

* (-) Learning long-range dependences is
challenging due to recurrent structure

* Can be aided by specialized architectures
like LSTM and GRU

e Suffer from training issues such as
vanishing gradient

* (-) Hard to scale up because each time
step depends on the previous one

* (+) Usually smaller number of
parameters, does not require lots of
data to train

Transformers

* (+) Attention mechanism better

captures long-range dependences

* Able to handle both global context and
local context

* No vanishing gradient issues

* (+) Processes tokens in parallel, makes

it efficient for training on GPUs

* (-) Usually large number of parameters,

requires lots of data to train



Evolutions of Transformers

Natural Language Processing:
* BERT (Bidirectional Encoder Representations from Transformers)

 GPT (Generative Pre-trained Transformer)
 RoBERTa (Robustly Optimized Bert Pre-training)
* T5 (Text-to-Text Transfer Transformer)

When it comes to Vision:

* Vision Transformer
* Swin Transformer, Pyramid Vision Transformer



Natural Language Processing Tasks

* Natural Language Processing is the process through which Al is taught to
understand the rules and syntax of language, programmed to develop complex
algorithms to represent those rules and then made to use those algorithms to
carry out specific tasks like these.

Language generation Answering questions Text classification

M= E—

O
5 (&
o

( —_— )

& = E,/:‘
M=

Sentiment analysis Machine translation




Natural Language Modeling History
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Natural Language Modeling History

GPT-2

GPT-4
RNN/LSTM

Attention ChatGPT

Word2vec mechanism

N-grams Transformers
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Transformer for NLP Tasks

* The Transformer was originally designed as an encoder-decoder model for
sequence-to-sequence tasks, like translation.

* During inference, it generates one word/token at a time and feeds it back into the model
as input for the next word/token.

* The process continues until a special end-of-sequence token (<EOS>) is produced or a
maX|mum Iength |S reaChEd. Decoding time step: 1(2)3 4 5 6 OUTPUT \
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The Need for a General Language Model

* Goal: Develop a language model with broad understanding capabilities.

 Why: This model can be adapted to various NLP tasks easily, we don’t have to
retrain a model from scratch every time.

* How? This requires language understanding.

* Pretrain a model that learns universal language patterns.
* Finetune the language model to learn specific tasks.

* Pretrained Transformer Models focuses on the idea of pre-training on vast
amounts of generic text data to capture universal language patterns.

* This allows the models to learn rich contextual representations that can be fine-tuned on
specific tasks with minimal data.

“For several years, people have been getting very good results pre-training [Deep
Neural Networks] as a language model and then fine-tuning on some downstream
NLP tasks (question answering, natural language inference sentiment analysis)”

— BERT author



Pretrained Transformer Models

* The transformer architecture inspired the creation of pretrained transformers like BERT and
GPT. Both models build directly on the original Transformer architecture but apply it differently.
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Pretrained Transformer Models

* The transformer architecture inspired the creation of pretrained transformers like BERT and
GPT. Both models build directly on the original Transformer architecture but apply it differently.
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Natural Language Modeling History
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Bidirectional Encoder Representations from Transformers (BERT)

BERT (Ours)

* BERT is a transformer-based model whose
language model is conditioned on both
left and right context (bi-directionally).

* Models like GPT process text left-to-right
(uni-directionally).

OpenAl GPT

e BERT works on both sentence-level and token-level tasks.

* BERT Training: BERT,, .,

* Pretraining: Understand the language
* Trained on entire Wikipedia and BookCorpus.

Layers 12

Feedforward

* Finetuning: Learn specific NLP tasks networks 768

. . (hidden units)
e Can be finetuned easily for downstream tasks.
Attention

« Targeted at multi-task objective. eans 12

BERTL GE Transformer
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Bidirectional Encoder Representations from Transformers (BERT)

* Pre-training: BERT is pre-trained using two main objectives:

* Masked Language Modeling (MLM): Randomly masks words in a sentence and trains the
model to predict them, encouraging it to learn context from both directions.

* Next Sentence Prediction (NSP): Trains the model to understand the relationship between
two sentences, useful for tasks like question answering and sentence coherence.
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Bidirectional Encoder Representations from Transformers (BERT)

* Fine-tuning: Once pre-trained, BERT is fine-tuned on specific

NLP tasks with

minimal adjustments, making it highly versatile for different applications.
* Apart from output layers, the same architectures are used in both pre-training and fine-

tuning.
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Bidirectional Encoder Representations from Transformers (BERT)

* BERT’s input representation combines three types of embeddings:
(words), (sentence distinction), and position

embeddings (word order within the sentence).

* Each input sequence begins with a special [CLS] token, whose final hidden state is
used for classification tasks.

* The [SEP] token marks the end of each sentence or segment.
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BERT Pre-training Stage: Masked Language Modeling (MLM)

* BERT masks a portion of the input words and trains to predict these masked

words using context from the sequence.
* Typically, 15% of the tokens are selected for masking. Among the candidates: 80% chance
to be masked, 10% chance to be altered, 10% chance remain the same.

* The task is reconstructing the token sequence given the masked one.
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BERT Pre-training Stage: Next Sentence Prediction (NSP)

* NSP helps BERT understand relationships between sentences, which is essential
for tasks like question answering and natural language inference.

* Given pair of sentences, it predicts whether the second sentence naturally
follows the first. It learns to classify each pair as “Is Next” or “Not Next”.

Next Sentence Prediction
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BERT Fine-tuning Stage

* Fine-tuning adapts BERT’s general language understanding (learned during pre-
training) to specific NLP tasks like sentiment analysis, question answering, and
named entity recognition (NER).

e For instance, given a QA dataset that consists of training samples (Question, Paragraph,
Answer), we naturally utilize the pre-trained weights to fine-tune BERT.
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Last Two Lectures -> Today’s Lecture

Natural Language Processing:
e Attention is all you need: Enc-Dec Transformer

* BERT (Bidirectional Encoder Representations
from Transformers)

* GPT (Generative Pre-trained Transformer)
 RoBERTa (Robustly Optimized Bert Pre-training)
* T5 (Text-to-Text Transfer Transformer)

Computer Vision:
* Generative Pretraining from Pixels
* VVision Transformer

* Swin Transformer, Pyramid Vision Transformer
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Computer Vision Tasks

 Computer Vision is the field of Al that enables machines to interpret and make
decisions based on visual data. It uses a variety of algorithms to recognize,
classify, and understand images or videos.

* Some key tasks in Computer Vision are:

Classification Instance Semantic
+ Localization

Object Detection

Classification

Segmentation Segmentation
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Buuldlng block of ResNet

Neural Networks in Vision
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Pre-2019: Convolution Structures Dominated

* In large-scale image recognition (e.g., ImageNet competitions), convolutional
residual learning (e.g., ResNet and ResNeXt) architectures were still state of the

art up to 2019.
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Pre-2019: Convolution Structures Dominated

* In large-scale image recognition (e.g., ImageNet competitions), convolutional
residual learning (e.g., ResNet and ResNeXt) architectures were still state of the
art up to 2019. | |

* A convolution operation involves sliding o | o |1 |0 | o | Cdsxe
a filter or kernel across the image. Each o [0 | 1|0 ™

position results in a weighted sum of
the pixel values covered by the filter,
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Vision Transformer: Transformer for the CV domain

 Self-attention-based architectures, in particular Transformers, have become the
model of choice in natural language processing (NLP).

* The learning paradigm with Foundation Models emerges: Researchers now get

the pretraining on a large text corpus and then fine-tune/inference on a smaller
task-specific dataset.

* Transformers’ computational efficiency and scalability make it a suitable choice

for such pretraining. We can now train NLP models of unprecedented size, with
over 100B parameters (e.g., GPT-4, LLaMA).

®

GPT-4

* But how about the computer vision (CV) community? Can we apply the same
success story in the CV domain?



Transformers for CV: Transformer Overview

* Input Tokens

* How do we tokenize an image in a manner similar to text
tokenization?
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ImageGPT: Generative Pretraining from Pixels [2020]

* Treat color value from each pixel as a discrete token!
» Typically represented as a 24-bit value ([0-255] per color channel) (vocab size of ~16.7M).

e Reduction: We may not need to store that many colors?
* A 9-bit representation ([0-8] per color channel) reduces vocabulary size to 512.

* However, Transformers have quadratic complexity O(n?) w.r.t. token length.
* For a 256x256 image, we would have 65,536 tokens (BERT max length was 512).

 Solution: just use lower resolution images (maximum size of 64x64).
* Trained on a similar objective to BERT (predict the next/masked pixels).
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ImageGPT: Generative Pretraining from Pixels [2020]

* Model Variants:

* iGPT-S, iGPT-M, iGPT-L:
e Parameters: 76M, 455M, 1.4B respectively.
* Trained on ImageNet.

* iGPT-XL:
* 6.8B parameters, trained on ImageNet + additional web images.
* Key Outcomes:

* Good image representations.
* Was SOTA on semi-supervised classification.

* Good image generations.
* Shown to be effective at modeling visual information.

* Training complexity:
* iGPT-L was trained for roughly 2500 V100-days.

* ResNet equivalent model trained in 70 V100-days.
* And this is just for 64x64 resolution images!

Pre-trained on ImageNet

Evaluation Model Accuracy  wj/olabels w/ labels
CIFAR-10 ResNet-15250 940 v
Linear Probe

SimCLR™ 95.3 v

iGPT-L 32x32 96.3 v
CIFAR-100 ResNet-152 78.0 v




Vision Transformer: An Image is Worth 16x16 Words

* Rather than quantizing pixels, Vision Transformer splits an image into patches
(16x16 pixels), which are flattened and linearly embedded to form tokens.

* Adds learnable positional embeddings to retain spatial information of patches.

* Adds a [CLS] token as an additional input to the transformer encoder.
* After processing, the representation of the [class] token is used for image classification.
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Vision Transformer (ViT)

* To handle 2D images, ViT reshapes the image of shape (H, W, C) into a
sequence of flattened 2D patches of shape (P?, C).

* (H,W) is the resolution of the original image, C is the number of channels, P is
the width of each image patch.

* Wethenget N = v,

Vision Transformer (ViT) i Transformer Encoder
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Vision Transformer (ViT)

* Position embeddings (E,,) are added to the to retain
positional information. ViT uses learnable 1D position embeddings.

e Similar to BERT's [class] token, ViT prepends a learnable embedding for image
class to the beginning of the embedding sequence, whose state serves as the
task representation for image classification.
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Vision Transformer (ViT)

* Transformer encoder consists of alternating layers of Multi-Head Self-Attention
(MSA) and MLP blocks.

e LayerNorm (LN) is applied before every block, and residual connections after
every block.

* Pre-Norm configurations tend to help improve the gradient flow during training.
* This approach has been adopted in updated official implementation of the Transformer.
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Vision Transformer (ViT)

* ViT has less built-in image-specific assumptions compared to CNNs.

* CNNs use local receptive fields and shared weights, making them better suited for
capturing spatial patterns.

* ViT operates on image patches without assuming local structure or spatial hierarchies.

* It relies on self-attention to capture relationships, making it more flexible but less biased towards
spatial locality. Each patch can attend to every other patch, providing a global context from the start.

* However, ViT requires more data or pre-training to learn spatial relationships effectively due to the lack
of locality bias.
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VIT Scalability and Attention Visualization

* A popular choice of the transformer encoder is Bidirectional Encoder
Representations from Transformers (BERT). The “Base” and “Large” models are

adopted from BERT.

Model Layers Hiddensize D MLPsize Heads | Params
ViT-Base 12 768 3072 12 86M

ViT-Large 24 1024 4096 16 307"M
ViT-Huge 32 1280 5120 16 632M

Scaled-up compared
to previous CNNs

* Visualization of attention values from the output token to the input space.




VIiT Results on ImageNet

* A popular choice of the transformer encoder is Bidirectional Encoder
Representations from Transformers (BERT). The “Base” and “Large” models are
adopted from BERT.
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VIiT Results on ImageNet

* A popular choice of the transformer encoder is Bidirectional Encoder
Representations from Transformers (BERT). The “Base” and “Large” models are
adopted from BERT.
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VIiT Results on ImageNet

* A popular choice of the transformer encoder is Bidirectional Encoder
Representations from Transformers (BERT). The “Base” and “Large” models are
adopted from BERT.
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